Zoophilous Pollination

Plant Cost-Benefits

- Animal vs. wind vectors
 - Animals actively seek specific flowers
 - Animals carry pollen farther
- Outcrossing possible at lower popn densities
- Low wind habitats suitable for plant reproduction
- Decreased pollen : ovule ratio

Plant Cost-Benefits

- Production of attractants
- Production of rewards
- Non-pollinating floral visitors
Animal Cost-Benefits

- High quality food from reliable sources
- Costs:
 - Pollen load negligible
 - Pollinia may obscure vision or movement
 - Ambush predation

Origins

![Origins Diagram](image)

Fig. 6.1

Mutualism as Leap-frog Selection

- Pattern clear for insects
- Not so clear for plants
 - Angiosperm are massively diverse
 - Zamiaceae cycads not more diverse than sister group
 - Gnetales less species rich than Pinaceae

![Mutualism Diagram](image)

Fig. 2.2
Role of Pollinators I

- Pollinator potential: ability of pollinator to remove/deposit pollen

Role of Pollinators II

- Pollinator effectiveness: ability of individual pollinators to transfer pollen
Role of Pollinators III

- Pollinator importance: the net movement of pollen within a plant population effected by a pollinator group during a flowering season

Pollination Syndromes

- Balance of trade-off between pollinator attraction/reward and optimizing out-crossing
- Indiscriminate attraction not ideal
- Selection to reduce self-fertilization

Out-crossing Mechanisms

- Protandry
- Pollen tube growth inhibition
- Stagger intra-plant flower production
- Herkogamy
- Monoecy
- Dioecy
Visual Cues I: Shape

- # of axes of symmetry
 - Actinomorphic
 - Zygomorphic
- Depth dimension

Visual Cues II: Size

Fig. 6.2

Visual Cues III: Fluctuating Asymmetry

Fig. 6.3
Visual Cues IV: Colour

- Pigments
 - Anthocyanins, anthoxanthins
 - Carotenoids
 - Flavones, flavonols
- Epidermal reflectance in nocturnally pollinated flowers
- Colour perception depends on combination of tri- or tetra-chromatic vision receptors

Olfactory Cues

- Cocktails of small cmpds incl. mono- & sesquiterpenes, fatty acids, phenolics
- Long-distance: attraction
- Short-distance: mediate flower visiting behaviour
- Communicate socially relevant information

Auditory Cues

- Petal of *Mucuna holtonii* deflects ultra-sound
- Acts as an auditory nectar guide
Plant Rewards I: Pollen
- Primary reward for eaters, secondary for nectar feeders
- Rich in protein, therefore costly to plant
 - Poricidal anthers
 - Gradually dehiscent anthers

Plant Rewards II: Nectar
- Modified phloem exuded from glands
- Sugars approx. [15-45%]
- Trace amino acids
- Diurnal production

Plant Rewards III: Other
- Oils for larval provisioning or nest construction
- Scents collected by Euglossine bees
- Seeds for offspring
Deceptive Pollination

- Decrease costs to plant
- Frequency-dependent
- Requires naïve pollinators

Pollination Syndromes

| Tab. 6.1 | \begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Butterflies</td>
<td>Moths</td>
<td>Birds</td>
<td>Bats</td>
<td>Beetles</td>
<td>Flies</td>
<td>Bees</td>
<td>Flowering Time</td>
<td></td>
</tr>
<tr>
<td>Dusky</td>
<td>Dusky</td>
<td>Nocturnal</td>
<td>Diurnal</td>
<td>Diurnal/annular</td>
<td>Diurnal</td>
<td>Matinal/diurnal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Scent</td>
<td>Shape</td>
<td>Reward</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Strong</td>
<td>Tubular</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Perfumy</td>
<td>Spur</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>Perfumy</td>
<td>Tubular</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bright</td>
<td>Strong</td>
<td>Wide</td>
<td>Nectar/pollen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Fermented</td>
<td>Flat</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drab</td>
<td>Fruity</td>
<td>Flat</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>Fruity</td>
<td>Flat</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>Fermented</td>
<td>Flat</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>Fermented</td>
<td>Flat</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>Fermented</td>
<td>Flat</td>
<td>Nectar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specialization vs. Generalization

<table>
<thead>
<tr>
<th>Plant species</th>
<th>Quesnelia arvensis</th>
<th>Heliconia angusta</th>
<th>Erythrina speciosa</th>
<th>Nemesia fumosa</th>
<th>Fuchsia carnea</th>
<th>Heliconia velositae</th>
<th>Gasteria marmorata</th>
<th>Acrocomia achatina</th>
<th>Vriesea incrutata</th>
<th>Heliconia rostrata</th>
<th>Dafoiella pinnata</th>
<th>Heliconia spathicincta</th>
<th>Cestus spiralis</th>
<th>Kediumium imbricata</th>
<th>Ctenanthe ornata</th>
<th>Psychotria nuttata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Month</td>
<td>M</td>
<td>J</td>
<td>A</td>
<td>S</td>
<td>O</td>
<td>N</td>
<td>D</td>
<td>F</td>
<td>M</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 6.5
Handling Time and Constancy

Fig. 6.6

<table>
<thead>
<tr>
<th>Discovery Time (s)</th>
<th>Initial</th>
<th>Final</th>
<th>Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specialization vs. Generalization

- Plant ideal is specialization
- Select for pollinator effectiveness
 - Attraction
 - Manipulation

Pollinator-Mediated Selection

- High elevation: long spurs, no aerial bulbils
- Low elevation: short spurs

Fig. 6.7
Pollinator-Mediated Diversification

- Excitement
- Approach
- Pounce
- Pseudocopulation

Fig. 6.10

Flower-Mediated Selection

Fig. 6.11

Flower-Mediated Selection

Figs. 6.12 & 6.13
Active Pollination Mutualisms
- Fig & Fig Wasp
- Yucca & Yucca Moth
- Senita Cactus & Senita Moth

Phylogenetic Analyses

Future Studies
- Native pollinator restoration
- Colony Collapse Disorder