Insecticides

Components of Pesticides

- Formulants:
 - Carriers
 - Antidusts
 - Attractants
 - Encapsulants
 - Solvents
 - Adjuvants
 - Emulsifiers
 - Stickers

- Pesticide Active Ingredient

- Many formulated products

Insecticide Nomenclature

- Common name: carbaryl
- Trade name: Sevin®
- Chemical name: 1-naphthyl N-methylcarbamate
Insecticide Classification

- Grouped several ways:
 - Application
 - Chemical composition
 - Nature - inorganic (without C) or organic
 - Mode of action

Mode of Action

- Most modern chemical insecticides are neurotoxins
- Low phytotoxicity
- Mode of action, either:
 - Prevent/interfere with transmission of impulse along axon
 - Prevent or provoke transfer of impulse across synapse

Non-specific Neurotoxicity
Neurotoxicity

![Diagram of neurotoxicity involving neurotransmitters in vertebrates and insects.]

Neurotransmitters

- **Vertebrate**
 - CNS
 - Organs
 - Receptor
 - Muscle

- **Insect**
 - CNS
 - Organs
 - Receptor
 - Muscle

Neurotransmitters

- Acetylcholine
- Epinephrine
- Glutamine
- Indole/Catechol
- GABA

CNS

- Sympathetic
- Parasympathetic
- Somatic
Organochlorines

- Dominant insecticides between 1940-1960s
- Few used nowadays in Western world
- Still widely used in developing countries for public health (notably DDT)

Organochlorines

- Characterized by persistence and lipophilicity
- Chlorination increases resistance to photo and microbial degradation
- Rapidly cross insect cuticle
- Highly toxic to insects (and mammals)
 - e.g. 0.001mg lethal to a mosquito
 - DDT LD_{50} = 2 mg/kg (cockroach) and 200 mg/kg (rat)

Organochlorines

- Mode of Action:
 - Bind to ion channels and prevent closing, causing prolonged secondary impulses and after potentials in PNS
 - Hyperexcitation, tremors, paralysis
Nicotine and Neo-nicotinoids

- Alkaloid from tobacco plant
- Used as a powder since 17th C
- Used as a spray since 19th C
- Contact insecticide
 - Can easily pass through insect cuticle

Mode of Action:
- Acetylcholine mimic
- Binds to acetylcholine receptors at synapse junctions
- Insensitive to acetylcholinesterase, therefore not degraded
- Persistent activation of receptors
 - Hyperexcitation, twitching, convulsions and death

Advantages:
- Systemic in plants
- Low application rate
- Few non-target effects
 - Lower affinity for acetylcholine receptors in mammals than in insects

Disadvantages:
- May have high acute and long-term toxicity to mammals (oral and dermal LD$_{50}$ = 30-50 mg/kg)
Pyrethrin and Pyrethroids

- Natural insecticide synthesized from *Chrysanthemum* flowers
- High insect toxicity at relatively low doses
 - “Knock-down ability”
- Not persistent
- Low mammalian toxicity (acute oral LD$_{50}$ = 820-40,000 mg/kg)
- Modern pyrethroids may be more toxic (LD$_{50}$ = 25 mg/kg)

Mode of Action:
- All interfere with transmission of nerve impulse along axon
- Bind to sodium ion channel and prolong opening during action potential
- May act on peripheral nervous system

Type I:
- Causes hyperexcitation and convulsions
 - e.g. allethrin, tetramethrin (natural)

Type II:
- Cause lack of coordination and irregular movements
 - e.g. synthetic pyrethroids

Advantages:
- Effective at low dose
 - e.g. 5g of pyrethroid capable of protecting an area from aphid attack, requiring 500g of an organophosphate
 - Much less selective on mammals than on insects

Disadvantage:
- None are systemic
Colony Collapse Disorder

Organophosphorus and Methyl Carbamates

- Includes some of most toxic pesticides in use today
- Most not persistent, don’t bioaccumulate
- Discovered in Germany in 1930s
 - Toxicity to humans discovered almost immediately with accidental poisoning
 - Some compounds (Sarin, Tabun) used as nerve gas in warfare and terrorism

Mode of Action:
- Binds to acetylcholinesterase and prevents further neurotransmission
- Acetylcholine builds up in synaptic area
- Restlessness, hyperexcitability, tremors, convulsions, paralysis
- Acts on CNS, slower acting
Organophosphorus and Methyl Carbamates

- Advantages:
 - Some are systemic (translocating within plants)
 - Need to apply less frequently
 - Good for sucking insects
- Disadvantages:
 - Toxic to mammals at low doses, even dermally contacted (applied as granules)
 - e.g. Parathion (LD₅₀ = 2-50 mg/kg)

Insect Growth Regulators

- The only arthropod specific pesticides
- Extremely low toxicity to mammals
- Include inhibitors of chitin synthesis, mimics of juvenile hormone and moulting hormones

Insect Growth Regulators

- A) Benzoylureas
 - Interfere with chitin synthesis (50% of exoskeleton)
 - Block linkage of N-acetylglucosamine units
 - Insect loses structural integrity and dies
 - Most effective when applied before a moult
Insect Growth Regulators

- **B) JH mimics**
 - Particularly effective when JH concentrations are low (such as pre-pupation)
 - Used as control of larval stage of mosquitoes, midges and beetles
 - Disrupts reproductive physiology of adult insects

Insect Growth Regulators

- **C) Synthetic Ecdysones**
 - Developed in 1990s
 - Low toxicity to some beneficial arthropods, such as honey bee
 - e.g. Tebufenozide: binds to ecdysone receptor protein of lepidopteran larvae
 - Induces lethal molts in all larval stages
 - High level of selectivity

Toxins from Bacillus thuringiensis

- Spore producing bacterium
- Endotoxins produced during sporulation are specific gut poisons to insects
 - Disrupts membrane leading to lysis
Toxins from *Bacillus thuringiensis*

- Several species of *Bacillus* have been used
 - *B. popilliae, B. lentimorbus*
 - Highly fastidious (require host to reproduce)
 - *B. thuringiensis* less fastidious, therefore easier to propagate and use commercially

Toxins from *Bacillus thuringiensis*

- Several sub-species discovered to have highly specific toxicity:
 - *B.t. kurstaki* and *aizawai* (Lepidoptera)
 - *B.t. israelensis* (Diptera)
 - *B.t. tenebrionis* (Coleoptera)
- *B.t.* toxins do not affect other species of animals directly
 - Degrade rapidly, not persistent

B.t. Resistance Potential

- Shown in laboratory for Indian Mealmoth (*Plodia interpunctella*), Almond Moth (*Cadra cautella*), Diamon-backed Moth (*Plutella xylostella*), Colorado Potato Beetle (*Leptinotarsa decemlineata*) and House Fly (*Musca domestica*)
References