Herbicides and Fungicides

Herbicides: Phytoxicity
- Must be able to inhibit a vital process so plants cannot grow or survive
- Because weeds grow among target plants, selectivity is important

Mode of Entry
- 1) Foliar Penetration
 - Main protection of leaf is cuticle (lipophilic)
 - Secondary protection is cell wall made of cellulose (hydrophilic)
 - Therefore, foliar herbicides must be both aqueous and lipoidal
Foliar Penetration

Polar entry route
Non-polar entry route

Cuticular wax
Cutin
Pectin
Cellulose
Plasmodesmata
Plasma membrane
Cytoplasm

Cell wall
Protoplasam

Fig. 24

Effect of Surfactants

Mode of Entry

2) Root uptake
- Herbicides applied to soil can also penetrate seeds
- If to be taken up by roots, must be able to pass endodermis (lignin or suberin coated ring of cells)
Mode of Entry

- **3) Stem uptake**
 - Little use for herbaceous weeds, good for woody plants
 - Water-soluble solution must be injected or mechanically penetrate bark
 - Oil-based sprays may penetrate bark but must be applied in high concentrations (enter through pores in bark)

Translocation within plant

- **Symplast:** total mass of living cells in a plant
- **Apoplast:** the non-living cell wall continuum that surrounds the symplast.

Translocation Within Plants

- **1) Symplastic movement:**
 - Protoplasm of plants is more or less continuous because of plasmodesmata and connectedness of transport cells (e.g. sieve-tube)
Translocation Within Plants

- 2) Apoplastic movement:
 - Includes cell walls, intercellular spaces and xylem elements
 - Permeable to water and dissolved solutes
 - Rate of water transport is great (>1 gallon/day for sunflower)
- Limitation: xylem moves upwards, therefore not good for foliar pesticides

Toxic Effects on Plants

- Complicated because a single chemical may have different effects at different doses and/or different sites of action
- Some herbicides stimulate growth in one area while inhibiting in another
 - Called Epinastic effects
 - Cause stem twisting and leaf curling
 - Plant usually dies from choking of vascular tissues

Toxic Effects on Plants

- 1) Contact Toxicity
 - Kill quickly
 - Translocation often not possible in time
 - Usually act by destroying cell membranes by breaking bonds between membrane proteins and plasma membrane
 - Causes necrosis in all exposed tissues in a few days
 - Because translocation limited, plants may regrow from roots and buds
2) Mitotic Inhibitors
- Inhibit growth by blocking some stage of mitosis
- Plant growth occurs principally in meristematic regions (root/shoot tips, young leaves, buds, vascular cambium)
- Often applied to soil to act on roots or germinating seedlings

3) Photosynthetic Inhibitors
- Majority of herbicides
- Because affects photosynthesis, often of little toxicity to animals

4) Respiration Inhibitors and uncouplers

Fig. 39
5) Nucleic acid metabolism and protein synthesis disruption
- Many ways to have these effects
- e.g. enter nucleus and remove histones
- e.g. could stimulate RNA polymerase in cytoplasm

Categories of Herbicides
- A) Synthetic auxins (plant growth regulators)
 - Mode of Action
 - At low doses, act as IAA mimics (auxin) & stimulates growth
 - Plants cannot degrade synthetic IAA, therefore toxic at higher doses & inhibits growth
 - Mobile by symplastic transport
 - Stimulates growth within stems, thus choking vascular tissues

Categories of Herbicides
- A) Phenoxy Alkanoic Acids (2,4-D)
 - Not persistent in soil
 - Rapidly degraded by soil microbes to carbon food source
 - Non-target effects include desirable plants
 - LD50 to animals is low (300-1000 mg/kg acute oral)
 - Bioaccumulation potential is low
 - Most studies report complete elimination in urine by 24hrs (however, has been linked to endocrine disruption and cancer development by epidemiological studies)
Categories of Herbicides

A) Phenoxy Alkanoic Acids (2,4,5-T)
- More persistent in soil than 2,4-D
 - Degradation takes months to years
- LD$_{50}$ to animals is moderate (400-500mg/kg acute oral)
- Agent Orange in Vietnam (1965-1970) has left TCDD contamination 40yrs later
 - www.hatfieldgroup.com

B) Triazines
- Heterocyclic nitrogen compounds
- R-groups differ but often include chlorine
- 2nd most important herbicides discovered
- Quite persistent and resist degradation

B) Triazines
- Most important is Atrazine
 - Others include simazine, propazine, cynazine etc...
 - Atrazine especially useful in corn
- 3 applications:
 - Preplant: remove surface vegetation
 - Pre-emergence: remove germinating broadleaves
 - Post-emergence: weed thinning
Categories of Herbicides

- B) Triazines
 - Mode of action
 - Enters by roots, translocated by xylem
 - Ultimate site of action is chloroplasts as inhibitor of photosystem II (cleavage of water)
 - Produces toxic free radicals in light reaction because of reduced electron transfer
 - Most grasses have high tolerance due to ability to detoxify
 - Widely used in corn crops
 - Potential for resistance if used repeatedly
 - e.g. lamb’s quarter (Chenopodium album)
 - LD50 toxicity low for animals (300 [cyanazine] - 5000 [simazine] mg/kg acute oral)

Atrazine Site of Action

Herbicide Resistance

- Resistance is common
 - Over 200 biotypes now resistant to a herbicide
 - Caused by continuous use of same herbicide or of same mode of action over several generations
 - May occur by mutations to target site of herbicide or detoxifying ability
Herbicide Resistance

- Most common form is to triazines
 - >60 resistant biotypes
 - Resistant plants have single amino acid substitution in the D1 protein, which prevents herbicide from attaching to plastocyanine electron acceptor of PSII
 - Caused by a single nucleotide base change

*Also: resistance from genetic engineering (Round-Up ready crops)

Categories of Herbicides

- C) Glyphosate
 - Most economically important in the world because sold with ‘Round-Up Ready’ crops
 - Absorbed by foliage and readily translocated symplastically
 - Non-selective, high activity
 - Low persistence, degraded by soil microbes within weeks
 - Advantage for reduced soil erosion, as controls weeds without tillage

Categories of Herbicides

- C) Glyphosate
 - Mode of Action
 - Inhibitor of amino acid synthesis
 - Plants produce 9/20 essential amino acids (leucine, isoleucine, histidine, valine, lysine, methionine, theonine, tryptophan and phenylalanine)
 - Chemicals causing breakdown in their production may often be harmless to animals
 - LD₅₀ toxicity low in animals (4000mg/kg acute oral)
Glyphosate Site of Action

```
Phosphoenol pyruvate → Erythrose-4-P
↓
Shikimate
↓
Shikimate-3-P
↓
5-Enolpyruvyl shikimate-3-P
↓
5-Enolpyruvyl shikimate-3-P synthetase
↓
Chlorismate
↓
Aromatic Amino Acids
```

Fig. 107

Fungicides

- Encompasses pesticides that control all types of pathogens
 - Bacteria, nematodes, as well as fungus
- Pathogenicity is often cryptic, therefore more difficult to control than weeds or insects
- Employed mostly on vegetable, fruit and nut crops
- Mostly have low mammalian toxicity (LD₅₀ in the thousands mg/kg), low persistence, biodegradable, low solubility (transport)

Fungicide Selection

- Chosen based on the following characteristics (apart from target toxicity)
 - Remain active for long time
 - Good adhesive properties
 - Good spreading properties
 - Persistence
 - Specificity (not toxic to host plant)
 - Active against range of pathogens
- Mode of action varies
 - Respiration inhibitors, protein phosphorylation, enzyme disruption etc...
Types of Fungicides

- **a) Systemic**
 - Absorbed by the plant and distributed to all parts
 - E.g. oxathiins, benzimidazoles, pyrimidines, organophosphates, triazoles, carbamates…

- **b) Non-systemic**
 - Effect only at site of application (protection)
 - E.g. dithiocarbamates, dicarboximides, dinitriophenols, quinones, antibiotics…

Types of Fungicides

- **Advantage of systemics:**
 - Plant continuously protected without reapplication
 - May be translocated to new shoots that grow after application
 - Not subjected to weathering
 - No residues (aesthetics)
 - Have potential to work on internal plant disease
 - Minimal work-related hazards

Types of Fungicides

- **Disadvantage of systemics:**
 - Development of resistance is common (usually just one mode of action)
 - Most fungicides are fungistatic, not actually fungicidal, therefore organism can recover as pesticide dissipates
Fungicide Resistance

- Potential is high due to extremely high numbers of spores (fecundity)
 - May spread rapidly
- Often, single base mutation can lead to resistance

Questions?